PredOxyPack®: How to predict the impact of the cold chain conditions on the oxygen barrier properties

A. Vermeulen, P. Ragaert, B. De Meulenaer and F. Devlieghere
Pack4Food

INDUSTRY
65 members

RESEARCH INSTITUTES / NETWORK ORGANISATIONS

Filling systems
Food products
Gasses
Packaging materials
Resins

Distribution

Food products
- composition
- pH
- aw

Shelf-life
- chemical
- microbial
- physical
Sustainability

Filliing System
- standard
- clean
- ultraclean
- Hot fill
- Aseptic
- In packaging
- MAP

Packaging material
- barrier
- active
- passive
- closure systems

©2013 - Vermeulen
Advice

Research

Training

Publications

Networking

www.Pack4Food.be
Activities Pack4Food
Research projects

- Recycling
- Bioplastics
- Intelligent packaging
- Sleeves
- Migration
- MAP O₂-absorbers
- Antimicrobial systems
- Barrier
- Heat resistance

Sustainability
Conscious and demanding
Convenience
Delicious healthy

©2013 - Vermeulen
Trends in food

- Mild preservative techniques
- Less use of chemical preservatives (e.g. benzoic acid)
- Reduction in fat, sugar and salt

Stability of food?

Importance of packaging
Trends in packaging

• Sustainability
 – Recycled materials
 – Light weight packaging
 – Monolayer packages
 – Waste management
Trends in packaging

- Consumer-on-the-go
- RTE meals
- Snacks
 - Portion packaging
 - Easy-opening
- Heat resistance
- Barrier

Pack4Food
PredOxyPack
©2013 - Vermeulen
Avoiding O_2 remains very important

O_2 in spoilage processes:

- **Chemical**: bv. fat oxidation, Vit C degradation, ...

- **Microbial**: bv. growth of spoilage and pathogenic micro-organisms

- **Discoloration reaction**: bv. browning
Avoiding O_2 remains very important

Residual O_2 must be as low as possible.

Determined by:

- At the moment of packaging
 - Filling concept (vacuum versus flushed)
- During shelf life:
 - Permeability of packaging material
 - The interaction with the food
Permeability of packaging material

Permeability is the combination of sorption and diffusion

P: partial pressure of the permeating component at inner and outer side
Permeability of packaging material

Permeability depends on:

- Polymer type
- Temperature
- Relative humidity
- Nature of the polymer (e.g. crystallinity, orientation, concentration of plasticizer,...)
- Thickness of the polymer
- Difference in partial pressure of gasses
Permeability of packaging material

<table>
<thead>
<tr>
<th>Polymeer</th>
<th>ml.25µm/m².d.atm</th>
<th>g.25µm/m².d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O₂ (min)</td>
<td>O₂ (max)</td>
</tr>
<tr>
<td>LDPE</td>
<td>6.500</td>
<td>8.500</td>
</tr>
<tr>
<td>HDPE</td>
<td>1.600</td>
<td>2.000</td>
</tr>
<tr>
<td>Cast PP</td>
<td>3.500</td>
<td>4.500</td>
</tr>
<tr>
<td>OPP</td>
<td>2.000</td>
<td>2.500</td>
</tr>
<tr>
<td>EVOH</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>PVdC</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PA</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>PS</td>
<td>4.500</td>
<td>6.000</td>
</tr>
<tr>
<td>PET</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Aluminium</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Temperature

• Arrhenius relation between temperature and permeability

\[P = P_{\text{ref}} \exp \left[\frac{E_p}{R} \left(\frac{1}{T_{\text{ref}}} - \frac{1}{T} \right) \right] \]

Most technical sheets give permeability at 20°C – 25°C

Important difference if products are stored in refrigerated conditions
Relative humidity

TABLE 8

Effect of Humidity on Oxygen Permeability

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Dry, at 0% r.h.</th>
<th>At 100% r.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyvinyl alcohol</td>
<td>0.01</td>
<td>25.0</td>
</tr>
<tr>
<td>Uncoated cellulose</td>
<td>0.13</td>
<td>200.0</td>
</tr>
<tr>
<td>Nylon 6</td>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Polyvinylacetate</td>
<td>55.0</td>
<td>150.0</td>
</tr>
<tr>
<td>Acrylonitrile-styrene copolymer</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Polyester</td>
<td>7.0</td>
<td>6.0</td>
</tr>
<tr>
<td>HDPE</td>
<td>110.0</td>
<td>110.0</td>
</tr>
</tbody>
</table>
Nature of the polymer

• Crystallinity

<table>
<thead>
<tr>
<th>Polymer</th>
<th>% Crystallinity</th>
<th>(P_{O_2}) (cm(^3)/ (mil day 100 in(^2) atm))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPE</td>
<td>50</td>
<td>480</td>
</tr>
<tr>
<td>HDPE</td>
<td>80</td>
<td>110</td>
</tr>
<tr>
<td>Nylon 66, quenched</td>
<td>20</td>
<td>8.0</td>
</tr>
<tr>
<td>Nylon 66, annealed</td>
<td>40</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Peeters – Van Bree, IVPV course 2011-2012
Nature of the polymer

• Orientation

<table>
<thead>
<tr>
<th>Polymer</th>
<th>% Elongation</th>
<th>P_O_2 (cm3/(mil day 100 in2 atm))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>80</td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>PET</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>5</td>
</tr>
<tr>
<td>Styrene–acrylonitrile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>copolymer</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Peeters – Van Bree, IVPV course 2011-2012
Partial pressure and thickness

Sorption Packing material Diffusion Sorption

P_1 P_2
Permeability of packaging material

Ideal material for MAP applications should have:

– High gas barrier
– High water vapor barrier
– Good mechanical strength
– Transparent (for some products)
– Low cost

Multilayers each with a specific function
Need for an easy-to-use software tool which allows the prediction of oxygen ingress for different packaging configurations, packaging materials and time-temperature profiles.
PredOxyPack

Can be used to...

– support the ‘translation’ of the OTR on the technical sheet
What does it mean exactly for your own packed product in
the specific storage conditions?

– optimize the packaging concept by comparing different
alternatives

– Fast screening on a large amount of packaging materials, by
which the amount of permeability measurements can be
decreased

BUT it can not replace all permeability measurements!
PredOxyPack: Input variables

• Packaging configuration

- Bag
- Tray
- Bottle & cap
- Cylinder
- Custom 1
- Custom 2
PredOxyPack: Input variables

Dimensions configuration: choice of units (converter of units build in software)

Food volume should be filled in: headspace volume calculated by software
PredOxyPack: Input variables

• Different components of package

[Diagram showing different geometric shapes with dimensions labeled: W, H, D, H1, H2, H3, D1, D2, W]
PredOxyPack: Input variables

- **Packaging material:** mono- and multilayer

<table>
<thead>
<tr>
<th>Component: Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area: 505.75 cm²</td>
</tr>
</tbody>
</table>

Material

<table>
<thead>
<tr>
<th>Material</th>
<th>Permeability</th>
<th>Thickness$_{test}$</th>
<th>T$_{test}$</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>85000</td>
<td>1</td>
<td>23</td>
<td>97.5</td>
</tr>
<tr>
<td>EVOH</td>
<td>12</td>
<td>1</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>PP</td>
<td>85000</td>
<td>1</td>
<td>23</td>
<td>97.5</td>
</tr>
</tbody>
</table>

Contact surface: calculated by software

Adding and removing a layer from a multilayer

Material choice: drop down menu with most common material or custom (unknown)
Material characteristics: (e.g. data on technical sheets)
- permeability: different units are foreseen in software
- Thickness$_{\text{test}}$: Thickness of the tested material
- T$_{\text{test}}$: Temperature at which permeability is determined
- Thickness: Actual thickness of the layer
PredOxyPack: Input variables

- **Time – temperature profile**

![Temperature Profile Diagram]

Time and temperature: choice of units

Amount of input steps is unlimited

Start simulation transfer to the output page

Save simulation input
PredOxyPack: input variables
PredOxyPack: output

Oxygen level in the headspace of the package

- Rood: 5 µm EVOH
- Blauw: zonder EVOH

Temperature Profile

©2013 - Vermeulen
PredOxyPack: output

Packaging

<table>
<thead>
<tr>
<th>Geometry</th>
<th>W (width)</th>
<th>L (length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag</td>
<td>20 cm</td>
<td>30 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Volume</th>
<th>Product Volume</th>
<th>Headspace Volume</th>
<th>Initial O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 cc</td>
<td>400 cc</td>
<td>100 cc</td>
<td>2.4 %</td>
</tr>
</tbody>
</table>

Component: Bag (1200 cm³)

<table>
<thead>
<tr>
<th>Material</th>
<th>OTR</th>
<th>Thickness<sub>test</sub></th>
<th>Temperature<sub>test</sub></th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPE</td>
<td>210000 cc/m².day.atm</td>
<td>1 µm</td>
<td>23 °C</td>
<td>32 µm</td>
</tr>
<tr>
<td>LDPE</td>
<td>2100000 cc/m².day.atm</td>
<td>1 µm</td>
<td>23 °C</td>
<td>32 µm</td>
</tr>
</tbody>
</table>

Temperature Profile

<table>
<thead>
<tr>
<th>Part 1</th>
<th>Part 2</th>
<th>Part 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 days</td>
<td>21 days</td>
<td>5 days</td>
</tr>
<tr>
<td>7 °C</td>
<td>12 °C</td>
<td>21 °C</td>
</tr>
</tbody>
</table>
PredOxyPack: output
PredOxyPack: extra features

• Simulations can be saved and opened again in a next session

• O$_2$ evolution as a function of time can be saved in a CSV-file and imported in e.g. Excel

• A report of the simulations can be generated in pdf
PredOxyPack: user friendly

Important incorporated functions

- Automatic unit conversion
- Programmed configurations (surface and volume calculations)
- Easy ‘help’ function
- Comparison of 6 different series
- Monolayer as well as multilayers
- Permeability database: min, max and default values for OTR
- Graphical output of the results
- Summary of the input variables for each series underneath the graph
- Personal simulation database for the user