What it takes to make it work:
The OnVü TTI

André Fuchs
Ciba, Basel / Switzerland
Overview

- Monitoring of the chill chain
- OnVuTM: the basic idea and how it works
- The heart of OnVuTM: label, UV light and filter
- The charging and labeling equipment
- The system label solution
- Conclusion and outlook
Monitoring of the chill chain

- Data loggers and RFID tags
 - Supply complete temperature history
 - Expensive compared to TTI labels
 - Reader required for RFID tags
 - Mainly for logistics, not suitable for consumer

- Time-temperature integrators (indicators)
 - Accumulate time-temperature history
 - Cost-efficient
 - Visual check, easy to use
 - Suitable for logistics and consumer
TTIs – important properties

- Color change of TTIs based on different chemical and biological principles
- Important for industrial application:
 - Activation mechanism
 - Storage conditions before application
- TTI activation by light: photochromic compounds (photo or phos = light; chroma = color)

![Diagram showing the transformation between leuco and colored forms of TTIs.](Image)
Spiropyran color fading in solution

- Lab experiment: spiropyran in organic solvent
- Activation by UV-LED
The OnVu™ TTI – the basic idea

- Photochromism in **crystalline state**!
- Color fading and activation energies of spiropyran crystals correspond to characteristics of bacterial growth
How does the OnVu™ TTI work?

① Before activation
② Activation by UV light
③ Color fading depending on time + temperature
TTI characterization by color measurement

- CIE Lab color system, measurement by spectrometers
- Characterization of TTI activation (= charging) and color fading

\[E = \sqrt{L^2 + a^2 + b^2} \]
Charging energy and shelf life

- Starting color of TTI can be modified by charging energy
- High flexibility to match different time-temperature conditions

Example
OnVu™ B1 label, different charging energies, at 4 °C
The heart of OnVu™: label, UV light and filter

Filter required for reversible \(\rightarrow\) irreversible system

TTR: thermotransfer ribbon
The protective filter – UV absorption

- High UV barrier in the UVA range (365 nm)
The making of ... the OnVu™ label

- Identification of suitable pigments in R&D labs
- Colorimetric characterization of TTI fading under different conditions (charging energy, temperature) and definition of reference color
- Registration of pigments including toxicological testing
- Technical documentation (specification, handling & storage) and quality testing for each production step
- Special know-how for printing of OnVu™ labels required
OnVu™ label printing at Bizerba P+E

- Printing of active TTI using water based flexo ink
- Control of printing parameters is vital for constant high TTI quality
- Bizerba P+E is certified for the manufacturing of OnVu™ labels
Shine some light on me – the TTI charging equipment

- Development of new charging equipment for OnVu™ labels based on UV LEDs
- Integration of TTI charging unit into existing label dispensers of Bizerba
- Modification of thermal transfer unit for TTR filter application
- Extensive testing of the complete system under realistic conditions: TTI label + TTR filter + charging and dispensing equipment
OnVu™ charging and labeling equipment

- Industrial label dispensers from Bizerba
- GLP-TTI for manual label application (10 to 20 labels per min)
- LDI-TTI for automatic label application (100 labels per min)

GLP-TTI

LDI-TTI
The OnVu™ system label

- 2D matrix code on label with tracing data (charging date and energy, batch no., product shelf life)
Outlook

- Special label for visual check of the Logistics chain
- Development of TTIs for frozen food
- Development of TTIs for longer shelf life (3 to 4 weeks)
Conclusions

Benefits of the OnVu™ TTI

- Stable and reproducible color fading based on photochromic pigments
- Cost-efficient manufacturing of TTI labels
- Defined activation at the point of packaging
- Simple storage and handling of TTI labels
- High flexibility through variable charging
- Charging, filter application and label dispensing of OnVu™ labels under typical industrial conditions using one machine
The partners of the OnVu™ project

Professor Dr. Yoav Eichen
Professor Dr. Dietrich Haarer

Ciba
Dr. Hans Reichert
Dr. Leonhard Feiler
Tracey Nisbet
Dr. André Fuchs

Bizerba
Michael Feuerstack
Uwe Jannasch
Dr. Winfried Bücken
Markus Uber

... and many helping hands in all companies!
EU projects - involved institutes

National Technical University of Athens
Petros Taoukis et. al

Maria Smolander et. al

Brigitte Petersen et. al

Yee Hilz et. al
Thank you for your kind attention!

www.onvu.com