Development of a setting and qualification method for a Biological TTI to ensure temperature control during the cold chain

Mariem ELLOUZE DRIDI,
Matthieu PICHAUD, Louis COROLLER
Olivier COUVERT, Dominique THUAULT
Catherine BONAITI, Renaud Vaillant

3rd International Cold Chain Management Workshop
Bonn, Germany, 2-3 June, 2008
1. Introduction

2. Biological TTIs: Development of a setting model

3. Model Validation

4. Evaluation of (eO)\(^{®}\) performances

5. Conclusions and perspectives
Introduction

• Food poisoning = major concern in Europe
 – 6,860 outbreaks in 2004 (EFSA, 2007)

• Systems like the HACCP system have improved the food quality and limited the bacterial concentration \((N_0) \) of the produced goods.

• Still, poor temperature control is observed in the distribution network.

• New regulations engage the food business processors responsibility.

→ Traceability tools are required
Introduction
1. Introduction

2. Biological TTIs: Development of a setting model

3. Model Validation

4. Evaluation of (eO)® performances

5. Conclusions and perspectives
Biological TTIs: Development of a setting model

- Growth models
 - $N_f \mu_{max} t$
- Lactic Acid production model
 - $[\text{Lactic Acid}] (t)$
- Anderson Hasselbach Relation
- Buffer effect model

Model

- Simulated response time = $\Sigma \delta_i$

- New [AH]t
- New pH(t)
Biological TTIs: Development of a setting model

The primary model: Rosso (1995)

\[\ln N = \begin{cases}
\ln N_0, & t \leq \text{lag} \\
\ln N_{\text{max}} - \ln \left[1 + \left(\frac{N_{\text{max}}}{N_0} - 1 \right)^{-\mu_{\text{max}}(t-\text{lag})} \right], & t > \text{lag}
\end{cases} \]

\(\mu_{\text{max}} \cdot \text{lag} = k \)

\(k \): physiological state constant

\[\mu_{\text{max}} = \mu_{\text{opt}} \cdot \gamma_2(T) \cdot \gamma_1(pH) \cdot \gamma_1(Aw) \cdot \gamma(AH) \]

\(\mu_{\text{opt}} \): optimal growth rate

\[\gamma(X) = \begin{cases}
0, & X \leq X_{\text{min}} \\
\frac{(X - X_{\text{opt}})(X - X_{\text{max}})^{n-1}}{(X_{\text{opt}} - X_{\text{min}})(X - X_{\text{opt}})(X_{\text{opt}} - X_{\text{max}})(X_{\text{opt}} + X_{\text{min}} - nX)}, & X_{\text{min}} < X < X_{\text{max}} \\
0, & X \geq X_{\text{max}}
\end{cases} \]

\(X \): pH, aw or T

\(X_{\text{min}} \): X value below which no growth is observed

\(X_{\text{max}} \): X value above which no growth is observed

\(X_{\text{opt}} \): X value for which \(\mu_{\text{max}} = \mu_{\text{opt}} \)

\(n \): Shape parameter. For T \(n = 2 \) for pH and Aw \(n = 1 \)

\[\gamma(AH) = 1 - \left(\frac{[AH]}{\text{MIC}} \right)^s \]

[AH]: Undissociated lactic acid concentration

MIC: Minimal Inhibitory Concentration of Lactic acid

s: shape parameter. For Lactic acid = 0.48.
Lactate produced by *C. piscicola*

(Vereecken and Van Impe, 2002)

\[
\frac{dLac}{dt} = Y_p \frac{dN}{dt}
\]

- Lac : lactic acid concentration
- N : number of cells at t time
- μ_{max} : maximum growth rate
- Y_p : acid production rate

Simulated response time=$\sum \delta_i$
Biological TTIs: Development of a setting model

Relating the lactic acid concentration to pH

Logistic model Whiting (1993)

\[
pH(Lac) = pH_0 \left[f \frac{1 + e^{-k_1 \lambda}}{1 + e^{-k_1 (Lac - \lambda)}} + (1 - f) \frac{1 + e^{-k_2 \lambda}}{1 + e^{-k_2 (Lac - \lambda)}} \right]
\]

\(pH_0\): initial pH of the medium
\(\lambda\): required acid concentration for the acidification reaction
\(k_1\): acidification rate of the first part of the curve
\(k_2\): acidification rate of the second part of the curve
\(f\): pH proportion for the acidification rate \(k_1\)

\[F = \log_{10} \left(\frac{f}{1 - f} \right)\]

\(F\) estimates the relative importance of the two acidification processes

\[F = a \cdot pH_0 + b\]
a and \(b\) are regression parameters.

Undissociated lactic acid concentration

(Anderson Hasselbach relation)

\[
pH = pKa + \log \left(\frac{Lac}{[AH]} \right)
\]

\(Lac\): lactic acid concentration
\(pH\): pH of the medium
\(pKa\): Lactic acid pKa
\([AH]\): Undissociated lactic acid
Biological TTIs: Development of a setting model

The model parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimate</th>
<th>CL 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_{opt}</td>
<td>0.8992</td>
<td>[0.8570, 0.9601]</td>
</tr>
<tr>
<td>k</td>
<td>2.0956</td>
<td>[0.1295, 5.3890]</td>
</tr>
<tr>
<td>$\log(N_{max})$</td>
<td>9.2791</td>
<td>[8.7424, 14.5057]</td>
</tr>
<tr>
<td>Y_p</td>
<td>9.3114 $\times 10^{-8}$</td>
<td>[8.865 $\times 10^{-8}$, 9.522 $\times 10^{-8}$]</td>
</tr>
<tr>
<td>λ</td>
<td>10.337</td>
<td>[-0.9588, 17.3543]</td>
</tr>
<tr>
<td>k_1</td>
<td>0.0204</td>
<td>[0.0072, 0.0285]</td>
</tr>
<tr>
<td>k_2</td>
<td>0.0722</td>
<td>[0.0561, 0.0991]</td>
</tr>
<tr>
<td>a</td>
<td>-0.0667</td>
<td>[-0.1046, -0.0287]</td>
</tr>
<tr>
<td>b</td>
<td>0.7896</td>
<td>[0.3494, 1.2405]</td>
</tr>
</tbody>
</table>

Cardinal Values

<table>
<thead>
<tr>
<th>Factors (X)</th>
<th>T ($^\circ$C)</th>
<th>pH</th>
<th>aw</th>
<th>[AH] (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{min}</td>
<td>-5.42 [-8.07 ; -2.78]</td>
<td>5.12 [4.90 ; 5.33]</td>
<td>0.924 [0.916 ; 0.933]</td>
<td>-</td>
</tr>
<tr>
<td>X_{opt}</td>
<td>31.61 [29.01 ; 34.22]</td>
<td>7.27 [6.42 ; 8.13]</td>
<td>0.997 / fixed</td>
<td>-</td>
</tr>
<tr>
<td>X_{max}</td>
<td>36.47 [33.13 ; 39.82]</td>
<td>10.24 [9.74 ; 10.73]</td>
<td>0.997 / fixed</td>
<td>-</td>
</tr>
<tr>
<td>MIC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.77 [7.24 ; 8.30]</td>
</tr>
<tr>
<td>s</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.48 [0.42 ; 0.54]</td>
</tr>
</tbody>
</table>
Biological TTIs: Development of a setting model

The model parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimate</th>
<th>CL 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_{opt}</td>
<td>0.8992</td>
<td>[0.8570, 0.9601]</td>
</tr>
<tr>
<td>k</td>
<td>2.0956</td>
<td>[0.1295, 5.3890]</td>
</tr>
<tr>
<td>$\log(N_{max})$</td>
<td>9.2791</td>
<td>[8.7424, 14.5057]</td>
</tr>
<tr>
<td>Y_p</td>
<td>9.3114×10^{-8}</td>
<td>[8.865.10^{-8}, 9.522.10^{-8}]</td>
</tr>
<tr>
<td>λ</td>
<td>10.337</td>
<td>[-0.9588, 17.3543]</td>
</tr>
<tr>
<td>k_1</td>
<td>0.0204</td>
<td>[0.0072, 0.0285]</td>
</tr>
<tr>
<td>k_2</td>
<td>0.0722</td>
<td>[0.0561, 0.0991]</td>
</tr>
<tr>
<td>a</td>
<td>-0.0667</td>
<td>[-0.1046, -0.0287]</td>
</tr>
<tr>
<td>b</td>
<td>0.7896</td>
<td>[0.3494, 1.2405]</td>
</tr>
</tbody>
</table>

Cardinal Values

<table>
<thead>
<tr>
<th>Factors (X)</th>
<th>T (°C)</th>
<th>pH</th>
<th>aw</th>
<th>$[AH]$ (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{min}</td>
<td>-5.42</td>
<td>5.12</td>
<td>0.924</td>
<td>[0.916; 0.933]</td>
</tr>
<tr>
<td>X_{opt}</td>
<td>31.61</td>
<td>7.27</td>
<td>0.997</td>
<td>fixed</td>
</tr>
<tr>
<td>X_{max}</td>
<td>36.47</td>
<td>10.24</td>
<td>0.997</td>
<td>fixed</td>
</tr>
<tr>
<td>MIC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.77 [7.24; 8.30]</td>
</tr>
<tr>
<td>s</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.48 [0.42; 0.54]</td>
</tr>
</tbody>
</table>
1. Introduction

2. Biological TTIs: Development of a setting model

3. Model Validation

4. Evaluation of (eO)® performances

5. Conclusions and perspectives
Model Validation

Model

Storage temperature

Shelf life

Observed response time

Storage temperature

N₀
Aw
N₀
pH
Aw
pH

(eO)°
freshness at a glance

good not good
Model Validation

- **Shelf life**:
 - TTIs number (shelf life = 11.5 days)
 - Observed time of response (days)

- **Observed response time**:
 - TTIs Number (shelf life = 4 days)
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.</td>
<td>Biological TTIs: Development of a setting model</td>
</tr>
<tr>
<td>3.</td>
<td>Model Validation</td>
</tr>
<tr>
<td>4.</td>
<td>Evaluation of (eO)® performances</td>
</tr>
<tr>
<td>5.</td>
<td>Conclusions and perspectives</td>
</tr>
</tbody>
</table>
Evaluation of (eO)® performances

\[\Delta E = \sqrt{(L - L_0)^2 + (a - a_0)^2 + (b - b_0)^2} \]
Evaluation of (eO)® performances

\[\Delta E = \Delta E_{\text{min}} + \frac{\Delta E_{\text{max}} - \Delta E_{\text{min}}}{1 + \exp[-\mu_{\Delta E}(t - t_i)]} \]

- \(\Delta E_{\text{min}} \): initial \(\Delta E \) value,
- \(\Delta E_{\text{max}} \): maximum \(\Delta E \) (estimated)
- \(\mu_{\Delta E} \): maximum rate for \(\Delta E \) evolution
- \(t \): time (h)
- \(t_i \): the time (h) when \(\Delta E = \Delta E_{\text{max}}/2 \)

\[\Delta E = \Delta E_{\text{min}} \quad \Delta E = 9.31 \]

\(\Rightarrow \) Deduce the response time \(t \)

\[\ln N = \begin{cases} \ln N_0, & t \leq \text{lag} \\ \ln N_{\text{max}} - \ln \left[1 + \left(\frac{N_{\text{max}}}{N_0} - 1 \right) \mu_{\text{max}}(t-\text{lag}) \right], & t > \text{lag} \end{cases} \]

- \(N \): number of cells at time \(t \)
- \(N_0 \): initial cell density
- \(N_{\text{max}} \): maximum cell density
- \(\mu_{\text{max}} \): maximum growth rate
- \(\text{lag} \): lag time

\(\Rightarrow \) Deduce the \(\mu_{\text{max}} \)
Evaluation of (eO)® performances

\[\ln(Y) = \ln(Y_{\text{ref}}) - \frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{T_{\text{ref}}} \right) \]

- \(T \) the absolute temperature (°K),
- \(T_{\text{ref}} \) the reference temperature (°K)
- \(t \) the time of response (h)
- \(t_{\text{ref}} \) the time of response at \(T_{\text{ref}} \) (h)
- \(E_a \) the activation energy (kJ/mol)
- \(R \) the universal gas constant

\[Y = \frac{1}{t} \]

\(\Rightarrow E_{a_t} \text{ of (eO)}® \text{ is 80 kJ/mol.} \)

\[Y = \mu_{\text{max}} \]

\(\Rightarrow E_{a_{\mu_{\text{max}}}} \text{ of (eO)}® \text{ is 86 kJ/mol.} \)
Evaluation of (eO)® performances

$\rightarrow E_a (eO)® = 80 \text{ kJ/mol}.$

<table>
<thead>
<tr>
<th></th>
<th>60 kJ/mol</th>
<th>100 kJ/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>76 kJ/mol</td>
<td>82 kJ/mol</td>
<td>83 kJ/mol</td>
</tr>
<tr>
<td>Pseudomonas in poultry</td>
<td>Pseudomonas in fish</td>
<td>Shewanella putrefaciens in fish</td>
</tr>
</tbody>
</table>
1. Introduction

2. Biological TTIs: Development of a setting model

3. Model Validation

4. Evaluation of (eO)® performances

5. Conclusions and perspectives
Conclusion & perspectives

• The model:
 – successfully predicts the response times of (eO)®
 – provides a range of possible settings to manufacture several TTIs suitable to different refrigerated goods.

• (eO)® is able to mimic the behaviour of several spoilage bacteria in different food.

→ (eO)® is a useful device for monitoring the quality of refrigerated food throughout the cold chain.

• New ranges of settings are now being developed to meet our clients requirements.
Acknowledgements

Project partners:
Thank you for your attention

mellouze@cryolog.com

http://www.cryolog.com
info@cryolog.com

89-93 avenue Paul Vaillant Couturier – 94250 Gentilly
Société Anonyme au Capital de 97 748,40 €
442 521 324 R.C.S. NANTERRE