Optimizing and retaining product quality in the supply chain:

for whom and who profits?

Hans Schepers¹ en Olaf van Kooten²

- ¹ Agrotechnology & Food Innovations
- ² Tuinbouwproductieketens, Wageningen Universiteit

What is product quality?

The consumer determines
The retail hase the power
The supply chain tries to cope

What are the consequences for innovation

Vertical dependence in the chain
Investment here = Profit there
Innovation=> strategic cooperation

Chain integration \Rightarrow Research strategy

Quality management & Consumer science

- Post-harvest product handling & logistics (ripening)
- Biological variation in physico-chemical product properties
- Sensory perception and evaluation (Liking)

The consumer model

Model description through ODE's

$$N(t) = Z - L(t) - H(t)$$

$$\frac{dL}{dt} = -(QE_QL - \frac{H}{\tau_H}) + (UE_U + r_L)N - \frac{L}{\tau_L}$$

$$\frac{dH}{dt} = QE_QL - \frac{H}{\tau_H}$$

The solution in steady state

$\frac{L}{Z} = \frac{1}{1 + \left[(r_L + UE_U) \tau_L \right]^{-1} + QE_Q \tau_H}$

Ripeness, Liking and Product Loss

Who earns what, during a promotion?

Profits per chain player as function of the total promotion budget. Dashed lines indicate the profits – after the promotion cost – when the retailer or trader pay 100% of the promotion budget. Solid lines correspond to the profits when 50/50% cost sharing of the promotion budget between retailer and trader is negotiated

WAGENINGEN UNIVERSITEIT WAGENINGEN UR

Who earns what, when waste occurs?

Profits per chain player as function of the average ripeness (left) and variation in ripeness (right). Dashed curves indicate fw = 1, solid curves fw = 0. Left panel is with variation v=5 days, the right panel is with average ripeness T=8 days (except for dotted line indicated Yc7, which corresponds to T=7)

WAGENINGEN UNIVERSITEIT

The effect of batch variation on profit?

Chain profit (Yc in fig. 5) as a function of product loss (W) given in percentage is shown to have an optimum (\bullet), dependent on the level of variation (v) of the quality attribute in the batches in the left pane

Conclusion

The more variation in batch quality, the more profit can be reaped from vertical cooperation!

Thanks for your attention. Questions?

© Wageningen UR

