

Microbial contamination affecting the atmosphere within modified atmosphere-packages of fresh-cut products

Tobias Thiele Department of Nutrition and Food Sciences Food Technology University of Bonn

Content

- What is MA-packaging?
- What happens inside a MA-package?
- Modelling the gas composition
- Extension of the model
- Simulation and discussion

MA-packaging of fresh-cut vegetables (e.g. lettuce)

- Modified Atmosphere: Specific gas composition inside packages to
 - slow down the respiration
 - prevent oxidation of polyphenols (discoloration)
 - antimicrobial effect
- Commodities are packed in permeable films
- Not oxygen-free like for bakery products due to the risk of off-flavour formation (aerobic metabolism)
- Recommended gas composition for fresh-cut lettuce:
 - 1...3 % oxygen, 5...10% carbon dioxide

What happens inside a MApackage?

MA packaging of respiring products

- gas composition is changed by the packed product
- change of gas composition is determined by
 - respiration of the product
 - film permeability

$$\frac{dV_{O2}}{dt} = -\text{Respiration} + \text{Permeation}$$

 $\frac{dV_{CO2}}{dt} = \text{Respiration} - \text{Permeation}$

Modelling the Respiration of the plant tissue

 ${\it \Phi}_{_{O\!2}}$

У₀₂₆

• Michaelis-Menten type of equation is used to describe the substrate limitation R_{max} $R_{PT} = R_{PT,max} \cdot \frac{y_{O2}}{\phi_{O2} + y_{O2}}$ $\frac{R_{max}}{2}$

Simulation parameters

Value	Parameter	
0,03 %	Carbon dioxide of ambient air	
20,9 %	Oxygen of ambient air	
101300 Pa	Standard pressure	-
1,3 L	Free packaging volume	
200 g	Mass of lettuce	
0,1 m ²	Film area	
40 µm	Film thickness	
0,017 mL·µm·m⁻²·Pa⁻¹·h⁻¹	Oxygen permeability of oriented polypropylene	
0,109 mL·µm·m ⁻² ·Pa ⁻¹ ·h ⁻¹	Carbon dioxide permeability of oriented polypropylene	
11,75 mL·kg ⁻¹ ·h ⁻¹	Maximum respiration rate of Iceberg lettuce	Smyth et al.
0,257 %	Halfmaximal oxygen concentration - respiration of Iceberg lettuce	1998 ₈

Results of the simulation

... fresh-cut products are **not** sterile.

→ Possibility of the microorganisms affecting the gas atmosphere

Microbial contamination of fresh-cut lettuce

- Total aerobic count
 10⁴...10⁸ cfu/g (*Pseudomonas spp.*)
- Lactic acid bacteria
 10¹... 10² cfu/g (Lactobacillus spp.)
- Yeasts
 - 10²... 10⁴ cfu/g (Candida spp.)

Model extension

- microbial respiration has to be covered separately due to growth of microorganisms
- growth models has to be combined with respiration
- respiration rate of *Pseudomonas fluorescens* was already determined

Growth experiments

Total aerobic count on lettuce at 7°C

Modelling the growth

→ nonlinear regression

Fitting of the parameters

Simulation: Original and extended model

Simulation: Different film permeabilities

• e.g. carbon dioxide

Change of permeability

- ... due to
- different film thickness
- perforations
- different film material

Conclusion

- Microbial respiration has to be taken into account when modelling the gas composition of MA-packages
- Changing the permeability can compensate the negative influence of the microorganisms
- Informations about the microbial status are helpful to select a proper packaging film
 → Quality improvement of MA-packed fresh-cut products